Isoelectric Point Calculation

Tianyi Shi

2020-02-07

Contents

By rearranging the Henderson-Hasselbalch equation:

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)
$$

we can get the ratio between an acid and its conjugate base:

$$
\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=10^{\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}\right)}
$$

and between an base and its conjugate acid:

$$
\frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}=10^{\left(\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}\right)}
$$

Thus, the proportion of deprotonated acid is calculated as follows:

$$
\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{A}]_{\text {total }}}=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]}=\frac{1}{1+\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}}=\frac{1}{\left.1+10^{(\mathrm{pK}} \mathrm{a}_{\mathrm{a}}-\mathrm{pH}\right)}
$$

Similarly, for basic species:

$$
\frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]_{\text {total }}}=\frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]+\left[\mathrm{BH}^{+}\right]}=\frac{1}{1+\frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}}=\frac{1}{1+10^{\left({\left.\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}\right)}^{2}\right.}}
$$

http://fields.scripps.edu/DTASelect/20010710-pI-Algorithm.pdf

